Vitasvet-energo.ru

Витасвет Энерго
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор громкости с выключателем питания

Отсоедините все наушники и внешние динамики.

На Mac выберите меню Apple

> «Системные настройки», нажмите «Звук», затем нажмите «Выход». Убедитесь, что флажок «Встроенные динамики» установлен, бегунок «Громкость на выходе» не переведен в крайнее левое положение, а флажок «Выкл. звук» снят.

Виды и особенности

Потенциометры классифицируются по типу изменения сопротивления, типу корпуса устройства и другим различным признакам, и параметрам.

Основное разделение потенциометров.

По характеру изменения сопротивления:
  • Линейные . Маркируются буквой «А». Сопротивление изменяется в прямой зависимости от угла поворота передвижного контакта.
  • Логарифмические . Маркируются буквой «В». В начале движения ползунка сопротивление изменяется быстро, а затем замедляется.
  • Экспоненциальные . Маркируются буквой «С». При повороте ручки сопротивление изменяется по экспоненциальной зависимости, то есть, вначале медленно, затем быстрее. Буквенные обозначения не всегда могут соответствовать действительности, так как это зависит от фирмы изготовителя прибора. Поэтому для определения типа потенциометра необходимо изучить техническое описание данного экземпляра.
По типу корпуса потенциометра:
  • Монтажные . Устанавливаются путем пайки на монтажную плату.

  • Стационарные оборотные . Располагаются на корпусе различных устройств. В свою очередь оборотные потенциометры разделяют на несколько видов:
    Однооборотные.

Скользящий элемент может поворачиваться на один оборот, а точнее, около 270 градусов. На полный оборот поворот невозможен, так как на остальной части сектора поворота размещены клеммы контактов. Наиболее популярными однооборотные переменные резисторы стали в устройствах, не требующих для регулировки более одного оборота.
Многооборотные.

Подвижный контакт имеет возможность выполнять несколько оборотов для увеличения точности регулирования параметра. Такие переменные резисторы обычно оснащены винтовым или спиральным резистивным элементом, применяются в устройствах, требующих повышенной точности разрешения и регулировки. Многооборотные модели чаще всего используют в виде подстроечных сопротивлений на монтажной плате.
Сдвоенные.

Включают в себя два переменных резистора, расположенных на одной оси. Это дает возможность выполнять регулировку параллельно двух сопротивлений. В таких моделях наиболее популярно использование сопротивлений с логарифмической и линейной зависимостью. Они применяются в стереорегуляторах усилителей звука, радиоприемниках и других приборов, требующих регулировки одновременно двух отдельных каналов.

  • Линейные (ползунковые) . Такие модели потенциометров разделяют на виды:
    Потенциометр ползунковый.

Одинарный линейный потенциометр служит для устройств аудиоаппаратуры. Такие модели выполняют из токопроводящего пластика для повышения качества изделия, используются для регулировки одного канала.
Линейный двойной.

Такая модель способна регулировать сразу два отдельных канала. Часто применяется для настройки стереофонической аппаратуры в профессиональных аудиоустройствах, требующих управления двумя каналами.
Ползунковый многооборотный.

Его конструкция включает в себя шпиндель, который преобразует вращательное движение в прямолинейное поступательное перемещение ползунка по сопротивлению. Он применяется в местах, где необходимо повышенное разрешение и точность. Такая модель устанавливается для подстройки параметров на монтажной плате.

Также разделяют на:
  • Тонкопленочные.
  • Проволочные.
По назначению делятся:
  • Переменные.
  • Подстроечные.

Сопротивления проволочных образцов выполняются из константановой или манганиновой проволоки, которая намотана на стержень, изготовленный из керамики. Такие модели резисторов изготавливают на мощность более 5 ватт.

Тонкопленочные резисторы включают в себя сопротивление из пленки, которая нанесена на диэлектрическую пластину, похожую на подкову. По ней передвигается ползунок, который связан с выходным контактом. Эта пленка образована слоем углерода, лака или другого токопроводящего материала.

Подстроечные резисторы предназначены для однократной подстройки значения сопротивления. Например, они используются в обратной связи импульсных блоков питания. Такие модели имеют компактные размеры, и спроектированы для профилактических или предварительных настроек устройств. После этого их чаще всего не трогают, оставляют с одной настройкой. Поэтому такие образцы не имеют высокой надежности и прочности, в отличие от переменных резисторов.

Переменные резисторы способны функционировать длительное время и большое число циклов регулировки.

Такие образцы потенциометров имеют повышенную стойкость к износу, в отличие от подстроечных. Переменные резисторы используются в качестве потенциометров в таких устройствах, где требуется настройка громкости звучания акустической системы, либо точная настройка температуры какого-либо устройства.

Потенциометры марки СП-1 на металлическом корпусе имеют вывод для подключения к общему корпусу устройства для защиты от помех.

Резисторы для подстройки марки СПЗ – 28 не имеют металлического корпуса, и его защитой будет корпус прибора, в котором установлен резистор. Внутренняя часть переменных резисторов аналогична, однако внешне они выглядят по-разному. Резисторы переменного типа оснащены надежной металлической или пластмассовой ручкой, которая соединена с ползунком.

Резистор, предназначенный для подстройки, не имеет такой ручки, и регулируется с помощью отвертки. Она вставляется в регулировочный паз механизма, который соединен с ползунком.

На электрических схемах потенциометры чаще всего изображают в виде постоянного резистора, имеющего регулирующий отвод со стрелкой. Она является символом подвижного контакта прибора.

При изображении в схеме реостата применяется изображение в виде прямоугольника, пересеченного наискось стрелкой. Это обозначает, что в работе задействовано два контакта: один – регулирующий, другой – один из двух крайних выводов.

Подстроечный резистор обозначают без стрелки, а контакт регулировки показывают тонкой линией.

Потенциометры с выключателем . Некоторые образцы потенциометров объединяют в одной конструкции две функции: потенциометра и выключателя. В регуляторе громкости такая конструкция очень удобна, особенно в переносном радиоприемнике. Повернув ручку, подключается питание, далее сразу происходит настройка громкости. Выключатель не соединен с цепью резистора, и имеет отдельную цепь. Однако он находится в одном корпусе с потенциометром.

Для примера можно показать такие марки переменных резисторов:

  • 24 S1 (китайский).
  • СПЗ-3М (отечественный).

Существуют также неразборные резисторы для подстройки марки СП4 – 1. Они заливаются эпоксидным компаундом, и служат для устройств военного применения. Резисторы марки СП3 – 16 предназначены для вертикальной установки на монтажную плату.

Металлокерамические потенциометры используются при производстве бытовых устройств. Их припаивают на плату для подстройки некоторых параметров. Мощность таких компактных резисторов достигает 0,5 Вт.

Читать еще:  Автоматический выключатель для подключения электроплиты

Резисторы с сопротивлением из лаковой пленки СП3-38 имеют открытый корпус. Они не защищены от пыли и влаги, имеют мощность менее 0,25 Вт.

Такие модели необходимо регулировать отверткой из диэлектрического материала, чтобы не допустить случайного замыкания. Подобные резисторы простой конструкции популярны в бытовой технике и электронике, особенно в источниках питания мониторов.

Герметичные потенциометры для подстройки оснащены защитным корпусом. Регулировка осуществляется диэлектрической отверткой. Они имеют повышенную надежность, так как на контактную дорожку не попадает влага и пыль.

Тороидные охлаждаемые переменные резисторы СП5 – 50М обладают достаточно мощным сопротивлением, имеют вентиляционные отверстия для охлаждения. Намотка проводника выполнена по форме тороида. Скользящий контакт перемещается по нему при вращении ручки с помощью отвертки.

В телевизионных приемниках еще встречаются высоковольтные виды подстроечных резисторов НР1-9А. Их величина сопротивления равна 68 мегом, мощность 4 Вт.

Они представляют собой набор резисторов из металлокерамики, собранные в одном корпусе. Стандартное рабочее напряжение для такого резистора равно 8,5 киловольт, наибольшее напряжение 15 киловольт.

Подстроечный резистор.

Только для начала уточним терминологию… По сути подстроечный резистор является переменным, ведь его сопротивление можно изменить, но давайте условимся, что при обсуждении подстроечных резисторов под переменными резисторами мы будем иметь ввиду те, которые мы уже обсудили в этой статье (поворотные, ползунковые и т. д). Это упростит изложение, поскольку мы будем противопоставлять эти типы резисторов друг другу. Да и, к слову, в литературе зачастую под подстроечными резисторами и переменными понимаются разные элементы цепи, хотя, строго говоря, любой подстроечный резистор также является и переменным в силу того факта, что его сопротивление можно изменить.

Итак, отличие подстроечных резисторов от переменных, которые мы уже обсудили, в первую очередь, заключается в количестве циклов перемещения ползунка. Если для переменных это число может составлять и 50000, и даже 100000 (то есть ручку громкости можно крутить практически сколько угодно ), то для подстроечных резисторов эта величина намного меньше. Поэтому подстроечные резисторы чаще всего используются непосредственно на плате, где их сопротивление меняется только один раз, при настройке прибора, а при эксплуатации значение сопротивления уже не меняется. Внешне подстроечный резистор выглядит совсем не так как упомянутые переменные:

Из-за небольшой износоустойчивости не рекомендуется применять подстроечные резисторы вместо переменных — в цепях, в которых регулировка сопротивления будет производиться довольно часто.

Обозначение переменных резисторов немного отличается от обозначения постоянных:

Собственно, мы обсудили все основные моменты, касающиеся переменных и подстроечных резисторов, но есть еще один очень важный момент, который невозможно обойти стороной.

Часто в литературе или в различных статьях вы можете встретить термины потенциометр и реостат. В некоторых источниках так называют переменные резисторы, в других в эти термины может вкладываться какой-нибудь иной смысл. На самом деле, корректная трактовка терминов потенциометр и реостат есть только одна. Если все термины, которые мы уже упоминали в этой статье относились,в первую очередь, к конструктивному исполнению переменных резисторов, то потенциометр и реостат — это разные схемы включения (!) переменных резисторов. То есть, к примеру, поворотный переменный резистор может выступать и в роли потенциометра и в роли реостата — все зависит от схемы включения. Начнем с реостата.

Активные стереоколонки Edifier S2000V

Стереоколонки Edifier S2000V представляют собой альтернативный вариант ранее протестированной модели S2000. Подробное описание колонок вы найдете в соответствующем обзоре, а сегодня мы рассмотрим ключевые особенности модели S2000V.

Напомним, что отличия колонок с литерой V заключаются в отсутствии цифрового входа и внешнего усилительного блока с беспроводным пультом ДУ. Таким образом, усилитель в S2000V расположен традиционно в одной из колонок, а для удобства управления предусмотрен проводной пульт управления.

Пульт ДУ выполнен в очень оригинальном стиле и представляет собой регулятор громкости с выключателем питания. Пульт заключен в металлический корпус и снизу имеет подсветку светло-зеленого цвета. Подключение осуществляется проводом метровой длины к задней панели активной колонки.

Так же, как и в модели S2000, регулятор громкости на колонке — моторизованный. В соответствии с регулировкой с пульта ДУ, ручка на задней панели колонки плавно вращается. Жаль, что это скрыто от глаз пользователя.

Колонки могут работать и без пульта ДУ. В этом случае регулировка громкости производится с задней панели.

На задней панели расположены также регуляторы уровня низких и высоких частот, линейный вход, выключатель питания и винтовые зажимы для подключения второй колонки.

Усилительная часть находится в задней части одной из колонок. Большим плюсом является то, что усилитель расположен в отдельной изолированной камере.

В усилительном тракте используется тороидальный трансформатор, обеспечивающий биполярное питание 22,5В на 2,25А. В качестве усилительных микросхем производитель использует два одноканальных усилителя мощности LM3886 от National Semiconductor.

Судя по приведенным диаграммам, используемая микросхема развивает мощность до 30 Вт при уровне искажений, не превышающем 0,1%.

Перейдем к измерениям в RMAA 5.5, проводившимся с помощью профессиональной звуковой карты ESI Juli@ и измерительного микрофона Behringer ECM 8000.

Посмотрим на график АЧХ тестируемых колонок, полученный воспроизведением тестируемой системой логарифмически нарастающего синуса (swept sine).

Судя по измеренному графику АЧХ, неравномерность колонки составляет ±3дБ в диапазоне 90 Гц — 20 кГц. При этом график представляет собой достаточно ровную линию, особенно в верхнем диапазоне.

По просьбе читателей мы измерили активную и пассивную колонку. На приведенных графиках можно видеть, что графики практически одинаковые.

Здесь можно наглядно видеть работу регуляторов тембра. Судя по нашим измерениям, амплитуда сигнала может изменяться до 10 дБ на частоте 140 Гц и 28 дБ на 15 кГц.

Читать еще:  Выключатель проходной двухклавишный обозначение

Спектрограммы гармонических искажений демонстрируют низкий уровень искажений. Во всем диапазоне уровень искажений не превышает -42 дБ, что соответствует 0,8%. Вместе с тем, на высоких частотах уровень искажений значительно ниже.

На приведенных спектрограммах мы можем отчетливо видеть, что при подаче синуса спектр сигнала остается чистым, без паразитных гармоник, кроме второй и третьей.

Звучание

При субъективном тестировании акустика подключалась к звуковой карте ESI Juli@. В качестве тестовых композиций использовался DVD-Audio диск с высококачественными треками AIX Records и специальная подборка лучших записей на CD-DA. Прослушивание проводилось в течение достаточного количества времени, чтобы получить исчерпывающее представление о качестве звучания.

Качество звучания колонок Edifier S2000V такое же хорошее и качественное, как у продвинутой модели S2000. Есть небольшие различия, которые слышны только при мгновенном переключении, но они несущественны. Интересно другое. В колонках на слух по-разному производится регулировка высоких частот. На наш взгляд, более верно и качественно регулировка осуществляется в модели с внешним блоком, так как там уже полоса регулировки тембра, что позволяет более избирательно эквализовать сигнал. Тогда как у S2000V высокие увеличиваются вместе со средними. Пожалуй, только в этом и заключаются очевидные отличия.

Выводы

Колонки Edifier S2000V оставляют после себя только хорошее впечатление. Так же, как и продвинутая модель S2000, колонки S2000V представляют собой качественное решение во всех отношениях.

Плюсы

  • качественное звучание;
  • замечательный внешний вид;
  • винтовые зажимы;
  • пульт ДУ.

Минусы

  • явных минусов не обнаружено.

Cредняя цена по Москве на акустику Edifier S2000V составляет Н/Д(0)

↑ Определяем характеристику

Дополнение от if33:

Со временем требования к многообразию регулировочных характеристик потенциометров были сведены к трем, наиболее часто применяемым функциональным зависимостям: линейной, логарифмической и обратнологарифмической. Они указываются на корпусе потенциометра наряду с его номиналом, и обозначаются так:

  • буква А (кириллица, отечественный стандарт) или буква В (латиница, западный стандарт) соответствует линейной зависимости сопротивления;
  • буква Б (кириллица, отечественный стандарт) или буква С (латиница, западный стандарт) соответствует логарифмической кривой сопротивления;
  • буква В (кириллица, отечественный стандарт) или буква А (латиница, западный стандарт) соответствует обратнологарифмической зависимости сопротивления.

Как определить функциональную характеристику переменного резистора?
Ну во-первых они все маркируются. «Аудио-резисторы» производства СССР (и видимо дружественных стран) шли с буквой «В» (русская буква В), импортные же резисторы (с той же характеристикой) маркируются буквой «А» (латинская А).
Если с маркировкой проблемы или Вы ей не доверяете, легко проверить характеристику можно с помощью любого тестера. Берете переменный резистор, располагаете его так, как он будет стоять в Вашем устройстве. Т.е. осью к себе. И ищете тестером где у него крайние выводы. Если выводы найдены правильно, то вращение оси не должно (никак) влиять на показания тестера. А показывать тестер должен тот номинал (или близкий), что написан на корпусе. Если резистор одинарный то третий вывод — это вывод движка. Если сдвоенный, то придется немного повозиться в зависимости от конструкции. Конструкция резисторов может быть разная.
Вот несколько, что попались:

Берем резистор (ну например №3) и начинем находить где у него что. У него сзади написано А50К. Резистор импортный, значит буква А — это обратно логарифмическая (показательная) характеристика. 50К — это 50ком.
И даже если надписи нет, все это очень легко измерить, а заодно и найдем нужные нам выводы.

Вращаем мы регуляторы (как правило) по часовой стрелке, т.е. слева направо. Разделим резистор на 2 половинки, левую и правую.Относительно движка. Левую и правую часть определяем вращением ручки влево и вправо. В крайнем левом положении прибор должен показать 0 ком (измерять нужно между движком и крайним выводом). Это левая часть. И наоборот. Теперь нужно поставить движек (ось) в среднее положение и измерить сопротивление между левой половинкой резистора и движком. Потом сопротивление между движком и правой половиной.

Итак, что я намерил: 2-ой и 6-ой выводы (если считать слева) — это выводы концов одного резистора из пары. Прибор показывает 47,2 кОм.
А вывод 1 — вывод движка. Сопротивление между выводом движка и выводом левой части = 8,1 кОм. Между движком и выводом правой части = 39,1 кОм. Разница большая. Это и есть резистор нужный нам. Все сходится.
3-й и 5-й — выводы концов второго резистора. Прибор показывает 46 кОм. 4-й — это вывод движка второго резистора. Ну и сопротивления соответственно 8 кОм и 38 кОм.

Ну и для наглядности и чтобы не забыть рисую простенькую картинку. На каком нибудь кусочке бумаги. Типа такой:

Помечаю начало движения (синенькая точка, эти выводы потом соединяться с землей). А в дальнейшем такую картинку использую для разводки платы. Очень удобно.

А если будет наоборот (левая половина больше правой) или они приблизительно равны, то такие переменники в регулятор громкости не пойдут. Правда если половинки равны (это переменик с линейной характеристикой), то с некоторой доработкой схемы включения использовать можно. На слух будет не очень заметно, но это не полноценная замена.

Вот собственно и все, резистор найден, выводы помечены, можно его включать в тракт звука.

Цифровой регулятор громкости на BA3520

Операционные усилители (ОУ) внутри — обычные, с той лишь разницей, что некоторые резисторы обратной связи уже установлены в микросхеме. Выходной ток предварительных усилителей — несколько миллиампер, выходных — около сотни миллиампер. На рисунках указаны рекомендуемые схемы включения, но, в принципе, ОУ можно включать по любой стандартной схеме, за исключением, разве что, дифференциальной.

Читать еще:  Выключатели для умного дома jung

Если слишком большое усиление не требуется, предваритепьные уси- лители можно не использовать, подав входной сигнал непосредственно на выходные усилители (их коэффициент усиления при максимальной громкости — около 7). При этом входы предварительных усилителей желательно соединить с выходом REF микросхемы. Если использовать эти микросхемы для замены переменного резистора, сигнал на входы лучше подавать через резисторы сопротивлением около 100 кОм (для компенсации усиления выходных усилителей), как показано на рис.За.

И вообще, во всех схемах с использованием ВА3520 сигнал на входы оконечных усилителей лучше подавать через резисторы сопротивлением не менее 10 кОм. Это значительно уменьшает шумы на выходе (микросхема “не любит” слишком низкоомные источники сигнала), но выход предварительного усилителя микросхемы можно соединять со входом оконечного непосредственно. К ТА8119 это тоже относится, хотя выражено гораздо слабее.

Для более плавной регулировки громкости в микросхеме ТА8119Р и ВА3520, а также для устранения “шороха” при вращении движка переменного резистора, между движком и общим проводом рекомендуется включить конденсатор емкостью 1…10 мкФ (“+” к движку). При “частичной неисправности” переменного резистора (перегорела или истерлась дорожка возле одного из крайних выводов) можно “выкрутиться”, несколько усложнив схему.

Переменный регулятор громкости на резисторе, транзисторе, микросхеме

Если перегорел контакт, к которому подводится движок резистора для установки минимальной громкости, используется схема на рис.36 или рис.Зв. Здесь резисторы R1 и R2 образуют делитель напряжения. Но следует отметить, что напряжение в средней точке такого делителя никогда не уменьшится до нуля: при указанных номиналах резисторов оно превышает 0,3 В. т.е. “нулевая” громкость недостижима.

Для устранения этого недостатка в схему добавлен повторитель на транзисторе VT1. При таком напряжении он все еще закрыт (порог открывания — около 0.6 В). В схеме на рис.3б достичь максимальной громкости также невозможно из-за упомянутого выше падения напряжения на транзисторе (около 0,6 В). Поэтому лучше использовать схему, изображенную на рис.3в.

Источник питания (+5 В) должен быть стабилизированным — иначе громкость будет “плавать”. При настройке этой схемы, возможно, понадобится подобрать сопротивления R3 и R4 для получения максимальной громкости. Если же перегорел “верхний” вывод переменного резистора, схема для его “лечения” становится еще проще (рис.Зг). Источник питания тоже должен быть стабилизированным.

Но если переменный резистор “восстановлению не подлежит”, единственный выход — использование цифровых регуляторов. В принципе, такие регуляторы можно построить и на обычной цифровой логике, пропуская звуковой сигнал через микросхему цифро-аналогового преобразователя (ЦАП). Подобные схемы неоднократно публиковались в отечественной литературе начала 90-х годов, но дешевле и удобней воспользоваться специализированной микросхемой, например, КА2250 (Samsung) или ТС9153 (Toshiba).

Регуляторы громкости на ЦАПе КА2250, ТС9153

Эти микросхемы — полные аналоги по электрическим характеристикам и цоколевке (рис.4), отличия только в названии. Они являются 5-битным стереоЦАПом (шаг регулировки — 2 дБ) с довольно скзерными характеристиками регулирования и не очень сложной схемой управления. Что радует — крайне низкие искажения. По этому параметру микросхемы практически не отличаются от переменного резистора, естественно, если амплитуда входного сигнала не превышает 1,5…2,0 В и правильно разведены “земли”.

Также предусмотрено “запоминание” уровня громкости при отключении питания, но в ячейке ОЗУ, т.е. для подпитки самой микросхемы нужна батарейка или конденсатор с малой утечкой.
Для нормальной работы этих микросхем требуется внешний источник образцового напряжения (UREF)- Если у источника сигнала (предварительного усилителя) есть свое UREF. тогда просто подводим его к выводам 4,13 микросхемы (рис.4а). Если же его нет, “сооружаем” внешний делитель напряжения (R1-R2- С1 на рис.4).

В обоих случаях напряжение на выводах 4 и 13 должно быть на 1…2 В меньше напряжения питания, но выше 1…2 В относительно общего провода. Напряжение UREF d каждом канале может быть разным. Собственно регулятор громкости состоит из пары резисторных матриц, коммутируемых через высококачественные полевые транзисторы.

На рисунке эти матрицы обозначены как постоянные резисторы. Для нормального функционирования микросхемы обе матрицы должны быть соединены последовательно и, желательно, через разделительный конденсатор (С4). Так как матрицы содержат только резисторы, то, в принципе, “вход” и “выход” можно поменять местами (что иногда можно обнаружить даже в “фирменных” изделиях), но лучше этого не делать.

Цифровая часть микросхем состоит из генератора с внешними частотозадающими элементами КЗ-С7, двух кнопок SB1, SB2 и коммутатора на диодах VD1, VD2. Громкость изменяется при нажатии и удерживании соответствующей кнопки. У микросхем имеется цифровой выход. Ток через этот выход изменяется от 0 до 1,3 мА (с шагом 0,1 мА) при уменьшении/увеличении громкости. Вывод 7 микросхем служит для “выключения” — при “нуле” на этом входе генератор отключается, а потребляемый микросхемами ток уменьшается до минимума.

“Регулирующая” часть микросхем при этом работает как обычно, но изменять громкость невозможно. Для того, чтобы при отключении питания микросхема “запоминала” уровень громкости, ее желательно подключать так, как показано на рис.46. При отключении питания напряжение на входах “Uпит” уменьшается до нуля, одновременно снижается напряжение на выводе 7, и цифровая часть микросхемы “отключается”.

Сама микросхема при этом питается через батарейку, ее заряда хватает на десятки лет. В принципе, использовать батарейку не обязательно — достаточно одного конденсатора емкостью более 1000 мкф, но даже самый лучший конденсатор не “продержится” более недели. Конденсатор С2 служит для начального сброса микросхемы при включении питания, поэтому он обязателен и должен располагаться в непосредственной близости от выводов питания микросхемы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector